
Efficient Deterministic Multithreading Without Global Barriers

Kai Lu1,2 Xu Zhou1,2 Tom Bergan3 Xiaoping Wang1,2

1.Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense
Technology, Changsha, PR China

2.College of Computer, National University of Defense Technology, Changsha, PR China
3.University of Washington, Computer Science and Engineering

{kailu, zhouxu, xiaopingwang}@nudt.edu.cn, tbergan@cs.washington.edu

Abstract
Multithreaded programs execute nondeterministically on
conventional architectures and operating systems. This com-
plicates many tasks, including debugging and testing. Deter-
ministic multithreading (DMT) makes the output of a mul-
tithreaded program depend on its inputs only, which can
totally solve the above problem. However, current DMT im-
plementations suffer from a common inefficiency: they use
frequent global barriers to enforce a deterministic ordering
on memory accesses. In this paper, we eliminate that in-
efficiency using an execution model we call deterministic
lazy release consistency (DLRC). Our execution model uses
the Kendo algorithm to enforce a deterministic ordering on
synchronization, and it uses a deterministic version of the
lazy release consistency memory model to propagate mem-
ory updates across threads. Our approach guarantees that
programs execute deterministically even when they contain
data races. We implemented a DMT system based on these
ideas (RFDet) and evaluated it using 17 parallel applica-
tions. Our implementation targets C/C++ programs that use
POSIX threads. Results show that RFDet gains nearly 2x
speedup compared with DThreads—a start-of-the-art DMT
system.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.3.4 [Programming Languages]: Processors—Runtime
environments

Keywords deterministic execution, multithreading, lazy re-
lease consistency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555252

1. Introduction
Multithreaded programs execute nondeterministically on
conventional systems: a program may produce different out-
puts in different executions even when provided with exactly
the same input. This complicates development in many as-
pects: debugging is difficult because bugs may disappear
on subsequent executions, and testing, fault-tolerant repli-
cation, and intrusion analysis become more difficult as well
[3, 17, 26, 30]. Deterministic multithreading (DMT) has
been recently proposed as a solution. DMT systems con-
strain execution so that multithreaded programs always ex-
ecute the same thread interleavings and produce the same
output when provided with the same input. Due to its many
applications, DMT has become an increasingly attractive
goal [3, 4, 7, 9, 11, 17, 18, 30, 37].

Prior general-purpose DMT systems take one of two
basic approaches. First, systems like Kendo [30] enforce
a deterministic order on synchronization only. In Kendo,
the basic idea is that a thread cannot perform synchroniza-
tion until all other threads have executed more instructions.
This approach, known as weak determinism, can be im-
plemented very efficiently in software, but it provides few
guarantees for programs with data races—such programs
may execute nondeterministically. The second approach
is to enforce a deterministic order on all memory opera-
tions. This approach, known as strong determinism, typically
proceeds by executing threads in bulk-synchronous quanta
[4, 7, 17, 18, 21, 28, 37]. Within each quantum, threads are
isolated. Each quantum ends with a global barrier, followed
by a short phase in which threads communicate memory up-
dates in a deterministic fashion. Strong DMT systems are
attractive because they guarantee determinism even in the
presence of data races. However, strong DMT systems are
not yet practical: hardware-supported approaches cannot run
on commodity architectures, while software-only implemen-
tations suffer from prohibitive overhead [6].

The strong DMT systems proposed previously all suffer
from a common source of overhead: global barriers. These
barriers provide a convenient place to make deterministic
decisions, but they force all threads to synchronize even

287

T1

T2

T3

global
barrier

lockstep quanta
with global barriers

communication phaseparallel phase
thread

blocked

thread
communication

wasted time

Figure 1. Global barriers in deterministic multithreading.

when such synchronization is unnecessary. This paper pro-
poses a way to provide strong determinism without intro-
ducing any global barriers. Our insight is to combine the
Kendo algorithm for deterministic synchronization with the
lazy release consistency (LRC) memory model, which was
first described in the context of distributed shared memory
[24]. Hence, we call our approach deterministic lazy release
consistency (DLRC). At a high-level, DLRC works in two
parts. First, we use the Kendo algorithm [30] to ensure that
synchronization operations happen in a deterministic order.
Second, we give each thread a private memory space and en-
force the following rule: a memory modification performed
by thread T1 is made visible in thread T2 if and only if
the modification happens before T2’s currently executing in-
struction. DLRC guarantees strong determinism but does not
require global barriers.

We have implemented DLRC in a software runtime sys-
tem called RFDet. Our implementation targets C/C++ pro-
grams that use POSIX threads (pthreads). We use page
protection to give each thread a private memory space so
that local modifications will not be immediately visible to
other threads. We provide our own implementation of the
pthreads library that is responsible for ensuring a deter-
ministic order of synchronization (using the Kendo algo-
rithm) and for propagating memory updates to other threads
(following DLRC). A key challenge is propagating mem-
ory updates efficiently. We partition each thread’s execution
into synchronization-free slices, and for each slice we use
page-diffing to compute the set of updates performed within
that slice. We use copy-on-write techniques to minimize the
number of pages that must be diffed. We evaluated RFDet on
a range of parallel applications, including the deterministic
stress test racey and 16 other programs from the SPLASH-2,
Phoenix, and Parsec suites. Our evaluation shows that RFDet
is deterministic and improves performance over DThreads
[28]—a state of the art DMT system—by nearly 2x.

The rest of this paper is organized as follows. Section 2
provides background in DMT systems and summarizes re-
lated work. Section 3 describes deterministic lazy release
consistency in detail. Section 4 describes our implementa-
tion of the RFDet runtime system. Section 5 describes our
evaluation, and Section 6 concludes.

2. Background and Related Work
Strong Determinism with Lockstep Quanta. Strong deter-
minism is a style of DMT that ensures deterministic results
even in the presence of data races. There have been many
recent attempts to provide efficient strong determinism. We
leave a detailed discussion of that prior work to the survey by
Bergan et al. [6] and to our bibliography [4, 7, 9, 17, 18, 21].

For this paper, we observe that all prior strong DMT sys-
tems use the same basic formula that is illustrated in Fig-
ure 1: execution is partitioned into quanta, where each quan-
tum includes a parallel phase in which threads are isolated,
followed by a short communication phase in which com-
munication is resolved deterministically. A parallel phase
ends after each thread has performed a deterministic amount
of work, where ”work” is usually measured by counting
instructions, and phases are separated by global barriers.
Note that DThreads [28] adopts a different mechanism: in
DThreads, a parallel phase ends after each thread encounters
any system-provided synchronization operation.

Global barriers introduce two sources of overhead. First,
they introduce unnecessary serialization. Suppose threads
T1 and T3 need to communicate, perhaps by writing to a
shared queue. Following the formula in Figure 1, T1 and T3
must wait for the communication phase before their writes
can proceed. Unfortunately, T2 must stop at the quantum
barriers as well, even though it has no need to communi-
cate—this serialization is unnecessary. Second, although all
threads perform a deterministic amount of work per quan-
tum, they might perform uneven amounts of work, leading
to imbalance. This potential for imbalance is illustrated in
Figure 1, and it has been shown to be a real performance
issue that requires careful tuning [4, 17].

Prior authors have observed that some performance can
be recovered by exploiting relaxed memory models. For ex-
ample, the first system to provide strong determinism used
sequentially consistent memory models [17]. Subsequent
systems used a relaxed memory model derived from total-
store-order (TSO) [4, 21], and most recently, RCDC pro-
posed a new memory model called DMP-HB [18]. We con-
tinue this trend by introducing deterministic lazy release
consistency (DLRC). DLRC is most similar to DMP-HB,
but is more relaxed, as DLRC does not require global barri-

288

ers. As we will argue in Section 3, DLRC relaxes memory
consistency and improves the efficiency of strong determin-
ism without breaking the semantics of the original program.

Prior systems use a variety of implementation strate-
gies, including compiler instrumentation [4], page protec-
tion tricks [3, 7, 9, 28, 29], and even custom hardware
[17, 18, 21]. Our system, RFDet, uses implementation tech-
niques that are most similar to DThreads [28], so our evalu-
ation will use DThreads as a comparison point.

Weak Determinism. Kendo [30] was the first system to
provide determinism for race-free programs by serializing
all synchronization operations in a deterministic order. The
basic idea is to let each thread run until it reaches a synchro-
nization operation, at which point the thread must wait until
all other threads have executed more instructions. We refer
to the Kendo paper for details [30].

Note that this algorithm does not use global barriers:
threads do not block until they attempt to perform synchro-
nization, and even then they are allowed to proceed immedi-
ately if they have the lowest instruction count. Our DLRC
memory model makes use of the Kendo algorithm as ex-
plained in Section 3.

Parrot [14] also provides weak determinism, but rather
than serializing synchronization via instruction counting as
in Kendo, Parrot schedules threads in a deterministic round-
robin order and uses programmer annotations to guide the
scheduler towards efficient schedules. However, even with
programmer annotations, Parrot cannot always find an ef-
ficient deterministic schedule and must occasionally resort
to nondeterminism. In contrast, Kendo’s (and DLRC’s) use
of instruction counting provides efficient and deterministic
schedules without requiring programmer annotations.

Strong vs. Weak Determinism. It is useful to compare
the guarantees of strong and weak determinism. Both ensure
determinism for race-free programs, but their guarantees
differ in the presence of data races. Weak systems such as
Kendo do not resolve data races deterministically, and thus,
they provide determinism up to the first data race, only. In
contrast, strong systems such as DMP resolve all data races
in a deterministic way, and thus provide determinism for
entire executions.

Kendo can help debug the first race encountered on a
given execution. This is useful, as all data races should be
considered bugs [12]. However, in practice, not all data races
are equally harmful—some races lead to severe crashes,
while others go relatively unnoticed [22]—and developers
need to prioritize their debugging effort towards those se-
vere bugs. Hence, we consider it vital to resolve all races
deterministically to ensure that the most severe races are re-
producible, and thus, debuggable.

Schedule Memoization. Tern [15] and Peregrine [16]
memorize schedules encountered during testing and reuse
those schedules during deployment when possible. This pro-
vides high reliability guarantees in cases where tested sched-

ules can be reused. However, it is not possible to reuse tested
schedules in all cases, so these systems must occasionally re-
sort to nondeterministic execution. Hence, they provide best-
effort determinism only.

A recent system by Bergan et al. [5] attempts to extend
the approach introduced by Tern and Peregrine to use input-
covering schedules. The idea is to compute a set of sched-
ules S that is sufficiently large so that program execution
can follow at least one schedule in S when given any input.
However, this approach requires an expensive symbolic ex-
ecution that has not been shown to scale to large systems.

Distributed Shared Memory (DSM) systems provide
a logically shared memory space for distributed systems
[23, 24] that does not share physical memory between nodes.
In RFDet, we use similar techniques to implement memory
modification propagation. There are two major differences:
1) RFDet ensures determinism while DSM systems do not
(see Section 3); and 2) RFDet manages threads with phys-
ically shared memory, while DSM operates on distributed
machines that do not share a physical address space.

Record and Replay systems (R+R) can deterministically
replay a multithreaded execution that was recorded previ-
ously [25, 27, 32, 33]. These systems record a trace of thread
interleavings in addition to program inputs. DMT systems
like RFDet have two advantages over R+R systems. First,
DMT systems guarantee that there is one possible execu-
tion for each input, so they can achieve deterministic replay
by recording program inputs only—this can result in signifi-
cantly lower recording overheads compared to R+R systems,
which must record thread interleavings as well [7].

Second, while R+R systems can replay a specific execu-
tion for a given input, DMT systems ensure that all execu-
tions behave the same way for that given input. This allows
DMT systems to provide benefits for program testing (by
ensuring that a program behaves the same way in produc-
tion as during testing) and for fault-tolerant state-machine
replication (by ensuring that all state machine replicas make
the same sequence of state changes when given the same se-
quence of inputs) [6, 15].

3. Deterministic Lazy Release Consistency
In deterministic lazy release consistency (DLRC), we divide
program operations into two categories: synchronization op-
erations (such as pthread mutex lock) and ordinary mem-
ory accesses (reads and writes). First, we use the Kendo al-
gorithm to ensure that synchronization operations happen in
a deterministic total order. Second, we give each thread a pri-
vate memory space and enforce the following rule: a mem-
ory modification performed by thread T1 is made visible
in thread T2 if and only if the modification happens before
T2’s currently executing instruction. This has two implica-
tions: (1) if a modification happens before the currently ex-
ecuting instruction, the modification should be visible; and

289

x=1 x=2

print x(0) print x(1)

T1

T2

rel

acq

happens-before

relation

Figure 2. Deterministic lazy release consistency.

(2) any modification that does not happen before the cur-
rently executing instruction must not be visible.

More formally, the definition of DLRC depends on the
happens-before relation. We use → to denote the happens-
before relation, so A→B means operation A happens before
operation B. The happens-before relation is the irreflexive
transitive closure of program order and synchronization or-
der, where A→B in program order if operations A and B
are performed by the same thread and A appears in the pro-
gram before B,1 and where A→B in synchronization order
if A and B are synchronization operations on the same ob-
ject (e.g., the same lock) and A completes before B.

Now suppose that R and W are read and write operations,
respectively, where R and W access the same location and
may be performed by different threads. In DLRC, R reads
the value written by W only if W→R and there does not
exist another write W2, to the same location, such that
W→W2 and W2→R. If there exists a third write to the
same location, W3, such that W→R and W3→R but there
is no happens-before relation between W and W3, then R
may read the value written by either W or W3, as long as
that choice is made deterministically. One strategy is to use
thread creation order as a tie breaker.

As shown in Figure 2, the first print in T2 must not see
the two modifications of T1 as there is no happens-before
relation between them. Meanwhile, the second print must
see the modification of x=1 but must not see the modification
of x=2 because only x=1 happens before that print due to
a previous synchronization between T1 and T2. Note that in
each case there is a data race that DLRC has resolved in a
deterministic fashion.

DLRC differs from LRC [23, 24] in two respects. First,
synchronization happens deterministically in DLRC due to
Kendo, but synchronization order is unspecified (nondeter-
ministic) in LRC. Second, although LRC guarantees that a
write W is visible to a read R if W→R, as in DLRC, it may
also allow a write W to be visible to R even when W �→R. In
contrast, DLRC guarantees that W must not be visible to R
when W �→R. For the example in Figure 2, x=2 may be vis-
ible to the second print in T2 in LRC, while this visibility
must be disabled in DLRC. This limitation helps us to guar-

1 In the C++, this is the sequenced-before relation [1, 13].

antee determinism but also makes the memory modification
propagation procedure more complicated than that of LRC
(see Section 4).

3.1 Advantages Over Prior Approaches
We have already said that DLRC improves prior approaches
to determinism by eliminating global barriers. The follow-
ing example illustrates our argument further. Suppose that in
some program fragment, threads T1 and T3 attempt to ac-
quire the same lock while thread T2 does not perform any
synchronization. With DLRC, T2 executes in isolation and
does not block. The only delays are, first, a small delay while
T1 and T3 use Kendo to deterministically arbitrate the or-
der of lock acquisition, and second, the unavoidable delay in
which one thread waits for the other to release the lock.

In contrast, prior systems insert extra delays due to global
barriers. In systems such as DMP [17], CoreDet [4], and
Calvin [21], execution may proceed as shown in Figure 1. In
these systems, synchronization cannot occur in the parallel
phase, so T1 and T3 must wait for T2 to arrive at the
global quantum barrier before they can synchronize. Due to
imbalance, this delay can be significant [4, 6]. Further, even
though T2 is not synchronizing, T2 must still wait for T1
and T3 to synchronize in the communication phase before it
can continue execution. RCDC [18] improves this somewhat
by allowing at most one thread to acquire a given lock in
the parallel phase without waiting for the global barrier.
However, two threads cannot acquire the same lock without
a global barrier, as in our current example. In DThreads,
the problem is potentially even worse as neither T1 or T3
can acquire the lock until T2 reaches some synchronization
operation, which may be far in the future.

Even if no thread performs synchronization, many sys-
tems still require global barriers, leading to the potential for
imbalance and wasted delays [4, 17, 18, 21]. DLRC requires
no global barriers, and, as we argue in Section 5, this leads
to improved performance.

3.2 Determinism
We demonstrate determinism with an informal argument
by induction over an execution trace. In the base case, all
threads execute for some time without performing synchro-
nization. This is trivially deterministic since each thread is
constrained to a private memory space. In the inductive case,
some thread executes a synchronization operation. Our use
of Kendo ensures that synchronization operations are or-
dered deterministically. Hence, the happens-before relation
is updated deterministically, and from this fact and the in-
ductive hypothesis, it follows that memory updates are prop-
agated deterministically. Another way to argue determinism
is the following: DLRC defines memory modification prop-
agation as a deterministic function over the happens-before
relation, and since our use of Kendo produces a determin-
istic happens-before relation, it follows that execution as a
whole is deterministic.

290

3.3 Correctness
As our implementation is targeted to C and C++, we must
show that source programs written in C and C++ can legally
execute under DLRC. Here, we argue that DLRC correctly
executes C++ programs that do not use low-level atomics—
we will return to low-level atomics in Section 4.6. The C++
memory model requires that all program executions adhere
to the following rule (see Section 6 of Boehm and Adve
[1, 13]): If the program has a data race, its behavior is un-
defined; otherwise, the program’s execution must be consis-
tent. Boehm and Adve give a five-part definition of consis-
tent in Section 6 of their paper. Below, we summarize the
three parts of that definition that do not refer to low-level
atomics, and we argue that, for race-free programs, DLRC
preserves semantics:

1. Execution respects single-threaded semantics. This triv-
ially holds as single-threaded semantics are not affected
by DLRC.

3. Each memory read R reads from a write W to the same
location such that W → R and there does not exist
another write W2 such that W → W2 and W2 → R.
DLRC follows this rule exactly (see above). Note that if
there exists a third write, W3, where W3 → R and W3
is concurrent with W , then there is a data race and the
C++ semantics allow R to read any arbitrary value.

5. Lock and unlock operations on each individual lock are
totally ordered by happens-before. This property holds
because, first, DLRC uses Kendo to order synchroniza-
tion, and second, Kendo orders all synchronization oper-
ations in a (deterministic) total order.

Boehm and Adve further argue that the above rules guar-
antee sequentially consistent execution of race-free pro-
grams (see Section 7 of their paper). Thus, DLRC preserves
sequential consistency for race-free programs, and we con-
clude that DLRC does not violate C++ semantics.

3.4 Discussion
Guarantees. DLRC guarantees that execution of a given
program with a given input will produce arbitrary but deter-
ministic and semantically-valid results, even in the presence
of data races. Essentially, DLRC achieves determinism in the
presence of data races by sequencing conflicting (racing) ac-
cesses in a deterministic order—note that this deterministic
order depends on input, meaning that DLRC may resolve the
same race in two different orders on two different inputs.

Inputs. We assume a broad definition of the term input.
Namely, in addition to the usual notions of input such as
commandline flags, user actions, and data read from files or
the network, our notion of input includes environmental pa-
rameters such as psuedorandom seeds, number of proces-
sors, and system load. Particularly, if a program is designed
to adjust its number of threads according to the current sys-
tem load, then we consider the current system load an input,

stack

stack

memory mapping

address align line

physical memory

virtual address space

stack

metadata

Shared
memory

Thread 1Thread 2 Thread 3

metadata metadata

Shared
memory

Shared
memory

Figure 3. Memory spaces in FPDet. Between different
threads, metadata spaces share both virtual addresses and
physical memory, shared memory spaces share virtual ad-
dresses only, and stacks share neither of them.

and as a result, our system may produce different executions
in environments with different system loads.

Other Languages. We see no reason why DLRC could
not be implemented for other languages, such as Java. How-
ever, our specific implementation merges conflicting (rac-
ing) updates in a way that can violate the Java memory
model (see Section 4.6), so, for Java, an alternative imple-
mentation is needed.

4. Implementation
This section presents our implementation of a DMT sys-
tem (RFDet) based on DLRC. The first issue is to make lo-
cal memory modifications invisible to other threads. To this
end, we use processes to replace threads so that the mem-
ory spaces are separated, as shown in Figure 3. In Linux,
this is implemented by using the clone system call so that
processes share everything (file descriptors, sockets, etc.) ex-
cept for a memory address space [28]. As a result, we have
to provide our own memory allocator to avoid address con-
flicts (Section 4.4). To implement inter-process communica-
tion, we reserve a metadata space which is a shared memory
region between these processes.

Based on these isolated threads, we implement thread
communication according to DLRC in the following way.
We provide our own implementation for the standard syn-
chronization operations in POSIX pthreads (Section 4.1).
We dynamically cut thread execution into slices using these
synchronizations. For each slice, we monitor its modifica-
tions, record them into the metadata space, and use a vec-
tor clock timestamp to describe its happens-before relation
with other slices (Section 4.2). In each synchronization op-
eration that induces a happens-before relation with another
thread, we propagate the memory modifications of all slices
that happen before the synchronization operation to the lo-

291

cal thread, and merge them into the local memory to make
them visible (Section 4.3). We perform four optimizations to
reduce the overhead in both time and space (Section 4.5).

4.1 Synchronization
We divide the standard POSIX pthreads synchronizations
into acquire operations and release operations. Specifically,
the acquire operations include lock, conditional wait, thread
entry, thread join and barrier. The corresponding release
operations are unlock, conditional signal/broadcast, thread
create, thread exit and barrier respectively. Note that barrier
is both an acquire and a release operation.

Deterministic Synchronization. As stated, we use the
Kendo algorithm [30] to make synchronization determinis-
tic. Briefly, in Kendo, a thread is allowed to perform syn-
chronization only if it has executed fewer instructions than
all other threads. We count instructions using compile-time
instrumentation. Specifically, we insert a call to instrTick(k)
in each basic block, where k is the number of memory in-
structions in that basic block. When instrTick is invoked
at runtime, we increment the current thread’s instruction
count.

By contrast, the original Kendo implementation used per-
formance counters to count instructions. We did not adopt
this method because the determinism of performance coun-
ters is not proven [34]. We otherwise follow the Kendo al-
gorithm as described, and we refer to the Kendo paper for
further details [30].

Internal Synchronization Variables. Synchronization
variables, such as mutexes, must be updated atomically
across all threads. However, we cannot update the appli-
cation’s memory atomically because each thread has an iso-
lated memory space. Our approach is to map each synchro-
nization variable to an internal synchronization variable that
is allocated in the metadata space. At each synchronization
operation, we lookup the corresponding internal variable in
the metadata space and operate on that internal variable di-
rectly.

Additionally, we add two fields to each internal synchro-
nization variable: lastTid and lastTime. These represent, re-
spectively, the ID of the last thread to release the synchro-
nization variable, and the time at which that release oc-
curred. We represent times using vector clocks [19] as ex-
plained in Section 4.2.

Mutexes and Condition Variables. At each acquire op-
eration, such as pthread mutex lock or pthread cond wait,
we check the lastTid field of the synchronization variable. If
the last release was performed by a different thread, we
propagate all memory modifications that happen before last-
Time into the current (acquiring) thread as explained in Sec-
tion 4.3. Otherwise, if the last release was performed by the
same thread, we merge the current thread’s previous slice
and new slice for efficiency, as explained in Section 4.5. At
each release operation, such as pthread mutex unlock or
pthread cond signal/pthread cond broadcast, we

set the lastTid and lastTime fields before we release the syn-
chronization variable.

Barriers. Barriers are special synchronizations as they
perform both acquire and release. At each barrier, we first
select the arriving thread with the smallest thread ID (call it
thread T), and then merge all modifications that happened-
before the barrier into T ’s local memory. The merging order
is determined by thread ID (the thread with the smallest ID
merges its modifications first) to ensure determinism. All
threads are given a copy of T ’s local memory (using copy-
on-write) after the merging completes.

Thread Create and Join. In pthread create, we use
the clone system call to implement threads so that each
thread is actually a lightweight process. We assign each new
thread a deterministic thread ID—calling pthread self

will return this ID instead of the ID assigned by the operating
system. Note that there is a happens-before relation between
thread creation and the child thread’s entry point. However,
we do not need to propagate memory modifications at this
moment as the child process will inherit the memory of its
creating process automatically. Further, we do not need to
monitor memory modifications in the main thread before the
first child thread is created. To implement pthread join,
we map the deterministic thread ID to the process ID re-
turned by clone, and use waitpid to wait for the specified
process. Note that we have to propagate all the modifications
of the joined thread to the main thread at this moment.

4.2 Slices
A slice refers to a period of single-threaded execution be-
tween two consecutive synchronizations. In other words,
each slice is immediately preceded and succeeded by syn-
chronization and there is no synchronization within the slice
itself. Hence, at each synchronization operation, we should
end the previous slice and begin a new slice. Slices have
a useful atomic property: all memory accesses inside a
slice will have the same happens-before relation to any
instruction outside the slice. This property enables us to
make slices our basic unit for memory modification propa-
gation.

Each slice is a triple <tid, modifications, timestamp>,
where tid is a thread ID, modifications describes the ordered
sequence of memory updates made by thread tid during the
slice, and timestamp is a vector clock timestamp for the slice.

Vector Clocks. We can easily know the happens-before
relation between any two slices by comparing their vector
clock timestamps. Namely, given two slices A and B, A →
B if and only if T ime(A) < Time(B) [19]. We maintain
a vector clock for each thread and increase it in the standard
way: 1) before each synchronization operation, we increase
the vector clock so that the next slice is older than the
previous slice; and 2) at each acquire that synchronizes with
a release in a different thread, we update the vector clock to
timestamp � T ime(R), where timestamp is the vector clock

292

1 void RecordStore(void *addr, size_t len) {
2 foreach pageid in pagesTouchedBy(addr, len) {
3 if (isInSharedMemory(pageid) &&
4 !currentSlice.hasPageSnapshot(pageid)) {
5 void *pagedata = metadata->allocOnePage();
6 memcpy(pagedata, PageAddr(pageid), PAGE_SIZE);
7 curentSlice.addPageSnapshot(pageid, pagedata);
8 }
9 }
10 }

Figure 4. Algorithm for Store instrumentation.

just before the acquire, T ime(R) is the vector clock of the
release, and � is a least-upper-bound.

Monitoring Memory Modifications. We represent mod-
ifications using a list of pairs <addr, data>, where each pair
represents a write of the value data to address addr. The
granularity of data is one byte. We need to collect the modi-
fications performed during each slice. As in DThreads [28],
our approach is to use page diffing: the first time a page is
written in a slice, we take a snapshot of the page and add
it to a modified pages list. Then, at the end of the slice, we
compare the snapshot pages with the corresponding modi-
fied pages byte-by-byte to compute the modifications.

We collect modified pages by instrumenting all Store in-
structions at compile time. We instrument each Store instruc-
tion as shown in Figure 4. Specifically, we check if the page
written by the Store is in shared memory (recall Figure 3)
and if this is the first time the page has been written in the
current slice. If so, we take snapshot of the page and add it
to the modified pages list of the current slice.

We assume that stack variables are not shared across
threads. At compile time, we use a conservative static es-
cape analysis to filter out Stores to stack variables, simi-
larly to prior work [4]. At runtime, we ignore stores to stack
pages (line 3 of Figure 4). Further, our compiler instrumen-
tation assumes the entire source code is available, includ-
ing for libraries. If the source is not available for library L,
then we assume that either (a) library L does not write to
shared memory locations, in which case instrumentation is
not needed, or (b) the shared memory locations written by
library L can be determined from its interface, in which case
we can instrument calls to L directly. Note that case (b) holds
for standard C library functions such as memset, memcpy,
and strcpy.

Another way to collect the modified pages is to use the
mprotect system call to protect shared memory with no
write permission at the beginning of each slice, and then use
copy-on-write to collect the snapshot pages modified by the
slice. We experimented with this approach, as it is the ap-
proach taken by DThreads [28], but we observed that this
approach was less efficient than compile-time instrumenta-
tion due to the high frequency of page faults and mprotect

system calls for programs with frequent synchronization (see
our evaluation in Section 5).

1 void DoMemoryModificationPropagation(thread from,
2 vtime upperlimit,
3 vtime lowerlimit){
4 foreach slice in from.slicepointers {
5 if(slice.time < upperlimit &&
6 ! (slice.time < lowerlimit)) {
7 copyToLocalMemory(slice.modifications);
8 localthread.slicepointers->append(slice);
9 }
10 }
11 }

Figure 5. Algorithm for memory modification propagation.

4.3 Memory Modification Propagation
To do memory modification propagation, each thread main-
tains a list of slice pointers that contains pointers to all slices
that happen-before the thread’s current program counter. The
slice pointers are organized in the happens-before order of
these slices. Concurrent slices are organized in a determinis-
tic order that is defined below (see “handling conflicts”). As
shown in Figure 5, when we need to do propagation at an ac-
quire, we collect the slices that happen before the release in
the remote thread and append them to the slice pointers list
of the local thread. As each new slice is appended to this list,
we write the slice’s modifications to local memory to make
those modifications visible.

When deciding which slices to propagate, four issues
must be considered. The first issue is to propagate only
happens-before slices—that is, slices should be propagated
only if they happen-before the current operation. For exam-
ple, in the first propagation between T1 and T2 in Figure 6,
T1 may already have produced the modification x=3, which
is contained in the second slice of T1, but this slice should
not be propagated as, according to DLRC, the modification
x=3 is not yet visible in T2. We set the vector time of the
slice that succeeds the current acquire (the first lock in T2
for this example) as an upperlimit time to filter out these
slices (line 5 of Figure 5).

The second issue is transitive propagation. Memory
modification propagation must be transitive as the happens-
before relation is transitive. Specifically, a slice of modifica-
tions can be propagated along several happens-before edges.
As shown in Figure 6, x=1 is propagated from T1 to T2 at
the first synchronization, and is also propagated from T2 to
T3 at the second synchronization. Since we copy all slices
into the local slice pointers list during propagation, the slice
containing x=1 will be appended into the slice pointers list
for T2 when T2 acquires the lock. That is, the slice pointers
list for thread T2 contains all slices that must be propagated
from T2 to T3, so transitive propagation will happen natu-
rally.

The third issue is to avoid redundant propagation. Re-
dundant propagation happens when the modifications of a
slice are propagated to a thread which has already seen those
modifications. In Figure 6, x=1 is redundant in the propaga-

293

happens-before
relation

program init: x=0,y=0,z=0x=1

lock

unlock

Thread 1 Thread 2

unlock

propagate (y=1, y=2)

merge (x=1, y=1/y=2)

Thread 3

lock

merge (x=1)

lock

x=3

merge (y=1/y=2)

unlock

y=1

y=2

propagate (x=1)

propagate (x=1,y=1)

lock

Figure 6. An example showing modification propagations in RFDet. The operation ‘y=1/y=2’ indicates modification y=1

overwrites modification y=2.

tion from T3 to T1. One way to identify a redundant slice
is to check if it already exists in the set of local slice point-
ers. This method may be inefficient if the set of local slice
pointers is large. A better method is to set a lowerlimit time
to filter out the slices that have already been seen (line 6
of Figure 5), where lowerlimit is simply the vector times-
tamp of the slice that precedes the current acquire operation.
Hence, any slice whose timestamp is smaller than lowerlimit
must have been seen by the local thread (due to DLRC), and
thus should be filtered out in propagation.

The last issue is handling conflicts. There are modifi-
cation conflicts between threads due to W/W data races. As
shown in Figure 6, y=1 performed by T2 and y=2 performed
by T3 is a modification conflict, as they are not ordered
by any happens-before relation. We resolve conflicts deter-
ministically as follows. For barrier synchronizations, we sort
modifications as described in Section 4.1. For all other syn-
chronizations there is a unique “remote” thread, so we re-
solve these conflicts deterministically by always overwriting
the local modifications with the remote modifications. So, in
Figure 6, y=1 overwrites y=2. The exception to this policy
is that we prefer “local” writes when the “remote” write is
redundant—the reason for this policy is subtle and will be
explained in Section 4.6.

4.4 Memory Allocation
Since threads are implemented in processes, the default
memory allocator in Linux (e.g., malloc in glibc) is invalid—
dynamic memory allocations in different threads may cause
memory address conflicts. For example, if malloc is called
twice from two threads, it may return the same virtual ad-
dress for these two newly allocated heap objects. These ad-
dresses will conflict in memory modification propagation.
To avoid address conflicts, we modified the Hoard [8] mem-
ory allocator to store allocation information in the meta-
data space so it is shared among threads. Therefore, when
a thread tries to allocate a memory region, we also reserve

the virtual addresses of the memory region in other threads,
which solves address conflicts. Note that these reserved vir-
tual addresses may not be mapped with physical memory
until they are touched by the local threads.

4.5 Optimizations
Garbage Collection. A slice stored in the metadata space
becomes garbage when it has been propagated to every
thread. We have to collect these garbage slices to prevent
them from exhausting the metadata space. Therefore, we
trigger garbage collection (GC) to reclaim unused slices
when the metadata space usage reaches a predefined thresh-
old. A slice is garbage when the timestamp of the slice is less
than the current vector clock of every thread—such slices
have already been merged into the local memory spaces of
all threads.

Slice Merging. If we encounter an acquire operation
that acquires a synchronization variable which was released
by the same thread previously, we do not end the current
slice. By continuing the current slice, we can avoid taking
page snapshots and we reduce the number of pages that
must be diffed. This optimization effectively merges the
slices on both sides of the acquire. Note that this merging
preserves the atomic property of slices stated in Section 4.2:
all memory accesses in the merged slice will have the same
happens-before relation to any instruction outside the slice.
We omit the proof due to space limitation.

Prelock. In each critical section within a lock/unlock pair,
we should propagate memory modifications according to
the happens-before relation. However, memory propagation
enlarges the original critical sections, leading to poor per-
formance when lock contention is heavy. We cannot move
memory propagation entirely out of the critical section as we
cannot confirm the happens-before relation before the lock is
acquired.

The prelock optimization is designed to shorten these
long critical sections. The idea of prelock is to reserve the

294

lock first. The reservation phase defines the order in which
threads will enter user’s critical section. For example, sup-
pose thread T1 attempts to acquire a heavily contended lock
currently held by thread T2. T1 first adds itself to the reser-
vation order. We do not yet know the complete happens-
before relation for T1’s eventual acquire operation. How-
ever, we know that acquire must happen-after the current
vector times of T2 and of every thread before T1 in the reser-
vation order. Thus, T1 can begin merging memory updates
that must happen-before its eventual acquire. It can do this
in parallel with T2, even before T2 releases the lock. When
T1 finally gets the token to enter the lock’s critical section, it
should first finish the unhandled memory modification prop-
agations. After the critical section, it passes the token to the
next thread according to the reservation order. This opti-
mization can move a large percentage of propagation work
into parallel mode (almost 80% in our experiment). Note that
the reservation order is determined by the Kendo algorithm
to ensure determinism.

Lazy Writes. This optimization reduces the number
of unnecessary memory writes performed during memory
propagation. We leverage the observation that not all the
propagated memory modifications are needed by the local
thread, thus we could postpone the write of these modifica-
tions until they are actually read by the local thread.

This optimization could reduce memory accesses in two
ways. First, if the modifications are not used at all, then the
writes for these modifications are omitted. Second, if the
modifications are not accessed by the local thread for a long
time, eager modification propagation would make multiple
updates to the location before the first access, while lazy
propagation makes just one update (containing the most-
recent value). For example, suppose a thread executes 20
critical sections between two accesses of memory location
X . In the worst case, the thread may receive 20 updates for
location X (one at each critical section). With the lazy writes
optimization, only the last update will be written.

When the lazy writes optimizations is enabled, we do not
write the propagated modifications into the local memory
directly. Instead, given a set of local pages to modify, we use
page protection to protect each local page with no Read or
Write permissions. Afterwards, when a memory access hits
one of these pages, we write the modifications of the page
into the local memory and unprotect the page.

4.6 Discussion
Correctness of Page Diffing to Accumulate Modifica-
tions. We are careful to store modifications at byte gran-
ularity (Section 4.2). The C++ memory model defines all
memory actions as operations over scalars [13], and since
the smallest scalar value in C++ is a byte, we must track
memory modifications at byte granularity for correctness.

Recall that we construct modification lists for a slice by
diffing each modified page with a snapshot containing the
page’s original values. It is not obvious that this diffing pro-

cedure produces correct modification lists. Specifically, what
happens when a thread overwrites a memory location with
the same value? For example, suppose x==0 at the begin-
ning of a slice, and suppose the slice executes the redundant
assignment x=0. Because the final value of x is the same
as its initial value, we do not include a modification for x in
the slice’s modification list, which means that the update x=0
will not be propagated to other threads. Perhaps surprisingly,
this is both deterministic and semantically correct. Consider
two cases:

First, suppose the program is race-free. In this case, each
read R of location x should read the value written by a
unique write operation, W1, where W1 happens-before R.
Specifically, there must a sequence of writes {W1,W2, . . .},
where each Wi writes to x, and where each write is progres-
sively older according to the happens-before relation. Sup-
pose that W1 . . .Wk all write x=0, and suppose that Wk+1

wrote some value to x other than 0. In this case, Wk is the
youngest write that is not redundant, and the slice contain-
ing Wk will have the modification x=0. Hence, we guarantee
that R reads the correct value (x=0) due to transitive propa-
gation from the slice containing Wk to the slice containing
R (recall Section 4.3).

Second, suppose the program has a data race. We must
resolve all races deterministically. Our policy is to prefer
writes that are not redundant. For example, in Figure 6,
suppose that the initial value of y is y=2, making the write
y=2 in T3 a redundant write. The first slice in T3 will be
empty, so when T3 acquires the lock, it will merge the write
y=1 from T2—this is effectively the same “remote write
wins” policy that we described in Section 4.4. Now suppose
that the initial value of y is y=1, making the write y=1 in T2
a redundant write. The first slice in T2 is now empty, so the
write y=1will not be propagated from T2 to T3. The result is
that y=2 will be kept in T3 and propagated to T1. Hence, our
page diffing procedure effectively implements the following
conflict-resolution policy: we prefer the “local” writes when
the “remote” writes are redundant.

This policy can lead to unexpected results in programs
with data races. For example, continuing with Figure 6, sup-
pose that y is a 32-bit integer initialized to y=0, and suppose
that T2 writes y=256 while T3 writes y=255. Due to our
policy of preferring non-redundant modifications combined
with the fact that we compute page diffs at byte granularity,
the final value merged in T3 will be y=511 (as 255=0x00ff,
256=0x0100, and 0x01ff=511). Of course, this result is de-
terministic, and it is also semantically valid, as the behavior
of a C++ execution is undefined in the presence of a data
race.

Ad Hoc and Lock-Free Synchronization. As in im-
plementations of LRC [23], we assume that programs use
system-provided synchronization operations only. Our im-
plementation does not support ad hoc synchronization, such
as via shared variable flags or lock-free algorithms. Pro-

295

0

2

4

6

8

10

12
Ex

ec
ut

io
n

tim
e

ov
er

 p
th

re
ad

s
DThreads RFDet-pf RFDet-ci

Figure 7. Execution time normalized to pthreads. All applications are running with 4 threads. RFDet-pf uses mprotect to
monitor modifications, while RFDet-ci uses compile-time instrumentation to monitor modifications.

grams using ad hoc synchronization may be incorrect in
DLRC (e.g., they may deadlock or violate atomicity) as the
happens-before relations implied by ad hoc synchronization
are not monitored and thus missed. There are two ways to
remedy this. First, the programmer can wrap ad hoc syn-
chronizations with a global lock to ensure they are serial-
ized [36]. Second, we could extend our implementation to
include an interface for ad hoc or lock-free synchronization,
similarly to the new interface for low-level atomic operations
in C++ [1, 2, 13], which we currently do not support. This
new interface includes support for operations such as atomic
increment and atomic compare-and-swap.

Totally supporting ad hoc synchronization and lock-free
algorithms is future work. However, we do not foresee any
major problems. To support C++ low-level atomics, we must
use the Kendo algorithm to ensure that atomic operations
happen in a deterministic order, and we must propagate
memory modifications as described in Section 4.1, depend-
ing on whether the atomic operation being executed is an
acquire and/or a release.

5. Evaluation
In this section, we present our evaluation results. All exper-
iments were conducted on an AMD server with a 2.2 GHz,
12-core CPU (AMD Opteron 6174) and 16 GB physical
memory, running Linux kernel version 2.6.31.5.

5.1 Methodology
To test whether RFDet can ensure determinism for multi-
threaded programs, we stressed it with racey—a parallel pro-
gram which is designed to contain numerous data races to
expose nondeterminism [20]. We verified the determinism of
RFDet by running racey 1000 times with 2, 4 and 8 threads
respectively. For each configuration, we got the same output
for all the 1000 executions.

In the performance evaluation, we compare RFDet with
DThreads [28]—a state-of-the-art DMT system, and pthreads—
the conventional nondeterministic multithreading library.
To test performance, we chose 16 parallel programs from
three different benchmark suites, which are SPLASH-2 [35],
Phoenix [31], and Parsec [10]. The SPLASH-2 suite was
configured with c.m4.null.POSIX. This configuration uses
lock and unlock to implement barrier. We use this con-
figuration to make applications execute more synchroniza-
tions to stress performance. Moreover, successfully running
benchmarks with this configuration shows that RFDet could
support C/C++ codes as long as they correctly use these
system-provided synchronization operations. Since RFDet
does not support ad hoc synchronizations, we omit some
benchmarks that contain complex ad hoc synchronizations
in our experiments—they either cause deadlock (e.g., fmm)
or violate atomicity (e.g., canneal). Note that DThreads does
not support ad hoc synchronizations either [28].

5.2 Performance
To test performance, we ran each application 10 times with
RFDet, DThreads and pthreads respectively, and gather
their mean execution times, as shown in Figure 7. We pro-
vide two versions of RFDet which use different methods to
monitor memory modifications. RFDet-ci uses compile-time
instrumentation to monitor memory modifications, while
RFDet-pf adopts the page protection method (recall the
discussion in Section 4.2). As we can see, RFDet-ci and
RFDet-pf incur an overhead of 35.2% and 72.9% respec-
tively compared with pthreads. RFDet-ci performs bet-
ter than RFDet-pf as it eliminates the overhead of page
faults and system calls such as mprotect (as discussed
in Section 4.2). Compared with DThreads, whose perfor-
mance overhead is about 2.5x, both RFDet-ci and RFDet-pf
have a smaller overhead—the performance improvements

296

Table 1. Profiling data of benchmark executions with 4 threads. In this table, wait refers to pthread cond wait, signal
refers to both pthread cond signal and pthread cond broadcast, and fork refers to pthread create. These programs
normally execute equal number of lock and unlock, and execute equal number of fork and join, so we just show one number in
these two columns.

sync ops memory ops memory footprint & GC
benchmark lock/ wait/ fork/ mem load store store w/ pthreads RFDet DThreads GC

unlock signal join copy (MB) (MB) (MB)
ocean 1100 671/199 6 36078529 29797587 6280942 77477 27 77.8 34.8 0

water-ns 6314 60/20 6 39256331 27183299 12073032 128983 5.9 53.3 11.0 9
water-sp 1103 90/30 6 89898824 64170352 25728472 13164 0.9 22.6 4.4 0

fft 54 21/7 6 163328252 87957717 75370535 49199 384 1012 450 0
radix 96 39/25 6 19087619 11675872 7411747 9422 40.5 295 107 0
lu-con 550 393/131 6 286770015 195163260 91606755 55806 16 60.1 25.7 0
lu-non 550 393/131 6 281461557 189840962 91620595 67364 8 100 43.9 0

linear regression 0 0 16 35173933 19185782 15988151 2 0.004 4.0 1.6 0
matrix multiply 0 0 16 3830399 3808551 21848 18 0.06 5.6 1.7 0

pca 816 0 32 3930114 3911170 18943 2034 1.5 76.9 1.7 0
wordcount 0 0 60 3607902 3215400 392502 149 2.1 56.6 3.8 0

string match 0 0 8 15769972 12348432 3421540 2 0.02 4.1 1.6 0
blackscholes 24 0/1 4 1171467 1084629 86838 5 0.4 5.1 2.0 0

swaptions 24 0/1 4 28848349 21900213 6948136 2671 97.6 264 99.5 0
dedup 9304 152/3599 12 3345249 3327108 18141 12511 1310 5602 1506 5
ferret 43025 1/16 18 488092 419263 68834 4562 45.9 353 49.8 2

of RFDet-ci and RFDet-pf over DThreads are 81.6% and
42% respectively. Moreover, we noticed that the perfor-
mance of RFDet is more stable than that of DThreads. As
shown in Figure 7, the worst-case performance of RFDet is
2.6x slowdown (ocean), while the worst-case performance
for DThreads is about 10x slowdown (lu-non).

Note that the major difference between DThreads and
RFDet-pf is that we remove global barriers. DThreads in-
troduces global barriers that may lead to poor synchroniza-
tion schedules, thus causing load imbalance problems. Since
RFDet does not introduce global barriers, it is more adapt-
able to a variety of synchronization patterns and has more
stable performance overheads.

5.3 Performance in Detail
To analyze the performance results, we collected the profil-
ing data of these program running in RFDet, as shown in
Table 1. In this table, we provide the number of synchro-
nization operations (we omit the number of barriers as none
of the programs execute barriers in our configuration), the
number of memory operations and the memory footprint for
each benchmark application.

Theoretically, the performance of RFDet should be sen-
sitive to the synchronization frequency of the user program.
We have two reasons for this: 1) each synchronization may
cause RFDet to perform memory modification propagation,
which is the major overhead of RFDet; and 2) as we record
memory modifications for each slice, higher synchronization
frequency indicates more slices need to be recorded, which
results in larger overhead. We can confirm this assumption
from the profiling data of synchronization operations. For
those applications that execute only a few synchronizations,
such as linear regression, matrix multiply and wordcount in

the Phoenix suite, the runtime overheads are small—they
even improve performance over pthreads due to better
cache behavior [28]. On the other hand, most applications in
the SPLASH-2 suite execute a large number of synchroniza-
tions, thus their performance overheads are more significant.

The frequency of memory operations may also affect per-
formance, especially for Store operations. As we can see
from Table 1, the number of Store instructions is much
smaller than the number of Load instructions. Moreover, in
the common case for most Store instructions, our added in-
strumentation (Figure 4) performs only a few branch instruc-
tions to check if the Store hits a new page. Hence, only a
small portion of these Store instructions will trigger a mem-
ory copy (see Column 9 in Table 1).

5.4 Memory Usage
One limitation of RFDet is that it consumes much more
memory than pthreads, as shown in Table 1. The extra
memory consumption comes from two sources. First, the
isolated threads maintain a local copy of each shared vari-
able, thus incurring an extra memory usage of (N − 1) ∗
SharedMemory, where N is the number of threads and
SharedMemory is the amount of non-stack memory allo-
cated by the application. Second, the metadata space con-
sumes extra memory. Memory consumption is shown in the
last three columns of Table 1. Column 10 is the memory us-
age of the application alone, and Column 11 is the memory
usage of the application running with RFDet. Specifically,
we define Column 10 and Column 11 as the equations be-
low, where N and SharedMemory are defined above, and
where StackMemory is equal to total memory used by all
stacks and MetadataSpaceMemory is equal to total mem-
ory used in the metadata space.

297

0
0.5
1

1.5
2

2.5
3

3.5
4

Sp
ee

du
p

ov
er

 2
 th

re
ad

s

pthreads-4 pthreads-8 RFDet-4 RFDet-8

Figure 8. Scalability of RFDet-ci compared to pthreads.

Column10 = (SharedMemory + StackMemory)

Column11 = (N ∗ SharedMemory + StackMemory

+MetadataSpaceMemory)

Note that the memory consumption of the metadata space
can affect the frequency of garbage collection, so we show
the garbage collection count in the last column. We allocate
memory in the metadata space when we either take a snap-
shot of a page (recall Figure 4) or convert these page snap-
shots to memory modification lists. The memory for stor-
ing a snapshot page is released immediately after we con-
struct a byte-granularity modification list via page diffing.
The memory for storing modification lists is released when
we perform garbage collection. In our experiments, we set
the size of the metadata space to 256MB and the threshold
for GC to 90% metadata space usage, thus the correspond-
ing GC count is shown in Table 1. However, when we set the
metadata space to 512MB, there will be no GC for all these
applications.

In pathological cases, even with garbage collection en-
abled, the slices in our metadata space can grow unbound-
edly large—this can happen if two threads execute for a long
time without synchronizing. A specific example of this phe-
nomenon is linear regression: this benchmark has the least
amount of communication (as it uses simple fork/join) but
has the highest relative memory overheads. We could im-
prove RFDet by using programmer annotations to identify
threads that never communicate—this would enable eager
collection of garbage slices and reduce the memory over-
heads of linear regression, though we have not yet explored
this idea.

Our Space/Time Tradeoff. Our approach investigates a
space/time tradeoff in DMT. A fundamental cost of strong
DMT is isolating threads’ memory, which is often done
using store buffers (CoreDet [4], RCDC [18], Calvin [21])
or memory protection (RFDet, DThreads, Conversion [29]).

Previous systems use global barriers to limit the growth of
isolated memory. Specifically, at each global barrier, isolated
memory regions (e.g., store buffers) are flushed into a global
store, which is then read-only during the next parallel phase
(recall Figure 1). Hence, global barriers reduce memory
pressure in these previous systems.

In contrast, RFDet eliminates the need for global barriers
by giving each thread an isolated memory space and elim-
inating the global store entirely—since there is no global
store to update, there is never any need for global commu-
nication, beyond that already required by the program’s ex-
plicit synchronization pattern, and we can eliminate those
global barriers required by previous DMT systems. The
downside, as we have just seen, is that isolated memory re-
gions can grow arbitrarily large in RFDet, in the worst case.
Hence, while previous systems trade lower memory pressure
for lesser-performance, we make the opposite tradeoff.

5.5 Scalability and Optimizations
We also tested the scalability of RFDet-ci. In this experi-
ment, we ran each application with 2, 4 and 8 threads re-
spectively, and calculated the speedups of the 4-thread and
8-thread executions with respect to the 2-thread execution.
Currently, we cannot run dedup and ferret with 8 threads
due to running out of memory, so they are not included in
this experiment. We also use lu-con to represent lu-non as
the results of these two applications are similar. As shown in
Figure 8, RFDet scales well for most applications (its scal-
ability is comparable to that of pthreads). Note that ocean
does not scale from 4 threads to 8 threads for both RFDet
and pthreads in our platform due to poor parallelism.

We used applications in the SPLASH-2 suite to test the
effectiveness of our prelock and lazy write optimizations.
We chose these applications because they use plenty of syn-
chronization operations, so the effect of these optimizations
is magnified. In this experiment, we first disable both op-
timizations (the baseline execution). Then we enable one of

298

0

0.5

1

1.5

2

2.5

ocean water�sp water�ns fft radix lu�con

Sp
ee

du
p

ov
er

 th
e

ba
se

lin
e

ex
ec

ut
io

n
prelock lazy write

Figure 9. Optimization of prelock and lazy write.

the two optimizations each time and test the performance im-
provement over the baseline execution. Figure 9 shows the
results of this experiment. As we can see, both optimizations
improve performance, sometimes considerably.

6. Conclusion and Future Work
In this paper, we propose a new memory consistency model—
deterministic lazy release consistency for C/C++ programs.
In DLRC, only those modifications that happen before the
current instruction should be visible. We use DLRC to im-
plement an efficient deterministic multithreading system
(RFDet) that, unlike prior systems, does not require global
barriers. Our evaluation shows that RFDet ensures deter-
minism with low overhead (35.2% on average, for the 16
parallel applications we tested). In the future, we will work
on solutions for ad hoc synchronizations, e.g., providing in-
terfaces for using ad hoc synchronizations or developing an
automated tool for identifying and processing ad hoc syn-
chronizations.

Acknowledgments
We thank our reviewers for their comments, which helped
improve this paper greatly. This work is partially supported
by National High-tech R&D Program of China (863 Pro-
gram) under Grants 2012AA01A301 and 2012AA010901,
by program for New Century Excellent Talents in Uni-
versity and by National Science Foundation (NSF) China
61272142, 61103082, 61003075, 61170261 and 61103193.

References
[1] S. V. Adve and J. K. Aggarwal, “A Unified Formalization of

Four Shared-Memory Models,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, pp. 613-624, 1993.

[2] S. V. Adve and M. D. Hill, “Weak ordering—a new def-
inition,” presented at the Proceedings of the 17th annual
international symposium on Computer Architecture, Seattle,
Washington, USA, 1990.

[3] A. Amittai, W. Shu-Chun, H. Sen, and F. Bryan, “Efficient
system-enforced deterministic parallelism,” presented at the

Proceedings of the 9th USENIX conference on Operating
systems design and implementation, Vancouver, BC, Canada,
2010.

[4] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man, “CoreDet: a compiler and runtime system for determin-
istic multithreaded execution,” presented at the Proceedings of
the fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems, Pittsburgh,
Pennsylvania, USA, 2010.

[5] T. Bergan, L. Ceze, and D. Grossman, “Input-Covering
Schedules for Multithreaded Programs,” in Proceedings of
the Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Indianapolis,
Indiana, USA, 2013.

[6] T. Bergan, J. Devietti, N. Hunt, and L. Ceze, “The Determin-
istic Execution Hammer: How Well Does it Actually Pound
Nails?,” in WoDET, 2011.

[7] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic
process groups in dOS,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
2010.

[8] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wil-
son. “Hoard: A scalable memory allocator for multithreaded
applications,” in Proceedings of the International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 117-128, Cam-
bridge, MA, Nov. 2000.

[9] E. D. Berger, T. Yang, T. Liu, and G. Novark, “Grace: Safe
multithreaded programming for C/C++,” in OOPSLA, 2009,
pp. 81-96.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations,” in Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, 2008.

[11] R. L. Bocchino Jr, V. S. Adve, S. V. Adve, and M. Snir,
“Parallel programming must be deterministic by default,” in
Proceedings of the First USENIX conference on Hot topics in
parallelism, 2009, pp. 4-4.

[12] H.-J. Boehm, “Position Paper: Nondeterminism is Unavoid-
able, but Data Races are Pure Evil,” in Proceedsing of the
2012 ACM workshop on Relaxing synchronization for multi-
core and manycore scalability (RACES), 2012.

[13] H.-J. Boehm and S. V. Adve, “Foundations of the C++
concurrency memory model,” presented at the Proceedings
of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, Tucson, AZ, USA,
2008.

[14] H. Cui, J. Simsa, H. Li, B. Blum, X. Xu, J. Yang, G. A.
Gibson, and R. E. Bryant, “Parrot: A Practical Runtime for
Deterministic, Stable, and Reliable Threads,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, Farmington, PA, USA, 2013.

[15] H. Cui, J. Wu, and J. Yang, “Stable deterministic multithread-
ing through schedule memoization,” in Proceedings of the
9th USENIX conference on Operating systems design and
implementation, 2010.

299

[16] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang, “Efficient
Deterministic Multithreading through Schedule Relaxation,”
in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, Cascais, Portugal, 2011.

[17] J. Devietti, B. Lucia, L. Ceze, M. Oskin, “DMP: deterministic
shared memory multiprocessing,”presented at the Proceeding
of the 14th international conference on Architectural support
for programming languages and operating systems, Washing-
ton, DC, USA, 2009.

[18] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman,
“RCDC: a relaxed consistency deterministic computer,”
in Proceedings of the sixteenth international conference
on Architectural support for programming languages and
operating systems, Newport Beach, California, USA, 2011,
pp. 67-78.

[19] C. J. Fidge., “Partial orders for parallel debugging,” in ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging, January 1989, pp. 24(1): 183-194.

[20] M. Hill and M. Xu. Racey: A Stress Test
for Deterministic Execution. Available:
http://www.cs.wisc.edu/ markhill/racey.html

[21] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood,
“Calvin: Deterministic or not? Free will to choose,” in High
Performance Computer Architecture (HPCA), 2011, pp. 333-
334.

[22] B. Kasikci, C. Zamfir, and G. Candea. “Data Races vs.
Data Race Bugs: Telling the Difference with Portend,” in
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[23] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release con-
sistency for software distributed shared memory,” SIGARCH
Comput. Archit. News, vol. 20, pp. 13-21, 1992.

[24] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel,
“TreadMarks: distributed shared memory on standard work-
stations and operating systems,” presented at the Proceed-
ings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, San Francisco,
California, 1994.

[25] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging
parallel programs with instant replay,” Computers, IEEE
Transactions on, vol. 100, pp. 471-482, 1987.

[26] E. A. Lee, “The problem with threads,” Computer, vol. 39,
pp. 33-42, 2006.

[27] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera:
Hybrid Program Analysis for Determinism,” presented at the
Proceedings of the 2012 ACM SIGPLAN conference on
Programming language design and implementation, Beijing,
China, 2012.

[28] T. Liu, C. Curtsinger, and E. D. Berger, “DTHREADS:
Efficient Deterministic Multithreading,” in Proceedings of
the 22nd ACM Symposium on Operating Systems Principles,
2011.

[29] T. Merrifield, and J. Eriksson, “Conversion: Multi-Version
Concurrency Control for Main Memory Segments,” in
EuroSys, 2013.

[30] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: effi-
cient deterministic multithreading in software,” in Proceeding
of the 14th international conference on Architectural support
for programming languages and operating systems, 2009, pp.
97-108.

[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis, “Evaluating MapReduce for Multi-core
and Multiprocessor Systems,” in Proceedings of the 13th
International Symposium on High Performance Computer
Architecture, Washington, DC, USA, 2007, pp. 13-24.

[32] D. Subhraveti and J. Nieh, “Record and transplay: partial
checkpointing for replay debugging across heterogeneous
systems,” in SIGMETRICS 2011, pp. 109-120.

[33] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, et al., “DoublePlay: Parallelizing Sequential Logging
and Replay,” in Proceedings of the sixteenth international
conference on Architectural support for programming lan-
guages and operating systems, Newport Beach, California,
USA, 2011.

[34] V. M. Weaver and S. A. McKee, “Can hardware performance
counters be trusted?,” in IISWC, 2008, pp. 141-150.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 programs: Characterization and
methodological considerations,” in Proceedings of the 22nd
annual international symposium on Computer architecture,
1995, pp. 24-36.

[36] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad hoc
synchronization considered harmful,” in Proceedings of the
9th USENIX conference on Operating Systems Design and
Implementation, 2010, pp. 163-176.

[37] X. Zhou, K. Lu, X. Wang, and X. Li, “Exploiting parallelism
in deterministic shared memory multiprocessing,” J. Parallel
Distrib. Comput., pp. 72(2012)716-727, 2012.

300

